Sixth Semester B.E. Degree Examination, December 2010 **Digital Communication**

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. State the sampling theorem. Show that the spectrum of a sampling signal $G_s(f) = f_s \sum_{s=0}^{\infty} G(f mf_s). \tag{07 Marks}$
 - b. Explain the quadrature sampling with related block diagram, spectra and equations.

 (06 Marks)
 - c. With related block diagram, equations and waveforms, explain original signal g(t) recovery from a flat-top sampled signal, using sample and hold circuit. (07 Marks)
- 2 a. What is meant by 'Idle channel noise'? Explain with two memoryless quantizer types.
 (06 Mar
 - b. 24 analog signals, each having a bandwidth of 10 kHz are to be time-division multiplexed and transmitted via PAM/AM. A guard band of 5 kHz is required for signal reconstruction from the PAM samples of each signal.
 - i) Determine the sampling rate for each signal.
 - ii) Find the transmission bandwidth.
 - iii) Draw the functional diagram of the transmitter and receiver of TDM signal.

(06 Marks)

- c. What is meant by robust quantization? Derive the equation for variance of quantization error (σ_0^2) from the basic principle of non-uniform quantizer. (08 Marks)
- 3 a. What are the types of quantization noises, which occur in delta modulation? Explain with a neat sketch and equations. (07 Marks)
 - b. Draw the digital data format for a given sequence 0 1 1 0 1 1 0 0 0 1 corresponding to i) Bipolar RZ ii) Manchester iii) Polar quaternary (natural code). (07 Marks)
 - c. Obtain the power spectral density of NRZ polar format.

(06 Marks)

- 4 a. Explain modified duobinary technique, with a block diagram along with frequency and impulse response sketches. (09 Marks)
 - b. What is meant by 'eye pattern' in the data transmission system? Explain.

(07 Marks)

c. Write a note on adaptive equalization.

(04 Marks)

PART - B

- 5 a. With a block diagram concept, explain the coherent binary FSK transmitter and receiver.
 (08 Marks)
 - b. For a given input binary sequence 0 1 1 0 1 0 0 0, sketch the inphase and quadrature phase components of QPSK. Then by adding these two waveforms, draw the final QPSK waveform. (06 Marks)
 - c. Explain the non-coherent DPSK system.

Λ	_	T		•	1
v	o	L	\mathbf{C}	o	1

6	a. b.	Define conceptual model of a digital communication system. Prove the Gram-Schmidt orthogonalization procedure.	(08 Marks) (12 Marks)
7	a. b.	State and prove the three properties of matched filter. With a neat block diagram, explain the quadrature receiver, using correlators.	(12 Marks) (08 Marks)
8	a. b. c.	Write short notes on: Pseudo noise (PN) sequence Frequency hopping Spread binary PSK system	
	d.	Applications of spread spectrum.	(20 Marks)

* * * * *